Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
J Med Chem ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648420

RESUMO

Classical psychedelics such as psilocybin, lysergic acid diethylamide (LSD), and N,N-dimethyltryptamine (DMT) are showing promising results in clinical trials for a range of psychiatric indications, including depression, anxiety, and substance abuse disorder. These compounds are characterized by broad pharmacological activity profiles, and while the acute mind-altering effects can be ascribed to their shared agonist activity at the serotonin 2A receptor (5-HT2AR), their apparent persistent therapeutic effects are yet to be decidedly linked to activity at this receptor. We report herein the discovery of 2,5-dimethoxyphenylpiperidines as a novel class of selective 5-HT2AR agonists and detail the structure-activity investigations leading to the identification of LPH-5 [analogue (S)-11] as a selective 5-HT2AR agonist with desirable drug-like properties.

2.
Br J Pharmacol ; 180 Suppl 2: S145-S222, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-38123150

RESUMO

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and over 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16178. Ion channels are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Farmacologia , Humanos , Canais Iônicos/química , Ligantes , Receptores Acoplados a Proteínas G , Bases de Dados Factuais
3.
Trends Pharmacol Sci ; 44(12): 978-990, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37914598

RESUMO

Serotonin is a neurotransmitter regulating numerous physiological processes also modulated by drugs, for example, schizophrenia, depression, migraine, and obesity. However, these drugs typically have adverse effects caused by promiscuous binding across 12 serotonin and more than 20 homologous receptors. Recently, structures of the entire serotonin receptor family uncovered molecular ligand recognition. Here, we present a map of 19 'selectivity hotspots', that is, nonconserved binding site residues governing selectivity via favorable target interactions or repulsive 'off-target' contacts. Furthermore, we review functional rationale from observed ligand-binding affinities and mutagenesis effects. Unifying knowledge underlying specific probes and drugs is critical toward the functional characterization of different receptors and alleviation of adverse effects.


Assuntos
Transtornos de Enxaqueca , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Serotonina , Ligantes , Sítios de Ligação
4.
ACS Pharmacol Transl Sci ; 6(10): 1492-1507, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37854625

RESUMO

Quality of life is often reduced in patients with sleep-wake disorders. Insomnia is commonly treated with benzodiazepines, despite their well-known side effects. Pellotine (1), a Lophophora alkaloid, has been reported to have short-acting sleep-inducing properties in humans. In this study, we set out to evaluate various in vitro and in vivo properties of 1. We demonstrate that 1 undergoes slow metabolism; e.g. in mouse liver microsomes 65% remained, and in human liver microsomes virtually no metabolism was observed after 4 h. In mouse liver microsomes, two phase I metabolites were identified: 7-desmethylpellotine and pellotine-N-oxide. In mice, the two diastereomers of pellotine-O-glucuronide were additionally identified as phase II metabolites. Furthermore, we demonstrated by DESI-MSI that 1 readily enters the central nervous system of rodents. Furthermore, radioligand-displacement assays showed that 1 is selective for the serotonergic system and in particular the serotonin (5-HT)1D, 5-HT6, and 5-HT7 receptors, where it binds with affinities in the nanomolar range (117, 170, and 394 nM, respectively). Additionally, 1 was functionally characterized at 5-HT6 and 5-HT7, where it was found to be an agonist at the former (EC50 = 94 nM, Emax = 32%) and an inverse agonist at the latter (EC50 = 291 nM, Emax = -98.6). Finally, we demonstrated that 1 dose-dependently decreases locomotion in mice, inhibits REM sleep, and promotes sleep fragmentation. Thus, we suggest that pellotine itself, and not an active metabolite, is responsible for the hypnotic effects and that these effects are possibly mediated through modulation of serotonergic receptors.

5.
Mol Psychiatry ; 28(9): 3829-3841, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37783788

RESUMO

Psilocybin (a classic serotonergic psychedelic drug) has received appraisal for use in psychedelic-assisted therapy of several psychiatric disorders. A less explored topic concerns the use of repeated low doses of psychedelics, at a dose that is well below the psychedelic dose used in psychedelic-assisted therapy and often referred to as microdosing. Psilocybin microdose users frequently report increases in mental health, yet such reports are often highly biased and vulnerable to placebo effects. Here we establish and validate a psilocybin microdose-like regimen in rats with repeated low doses of psilocybin administration at a dose derived from occupancy at rat brain 5-HT2A receptors in vivo. The rats tolerated the repeated low doses of psilocybin well and did not manifest signs of anhedonia, anxiety, or altered locomotor activity. There were no deficits in pre-pulse inhibition of the startle reflex, nor did the treatment downregulate or desensitize the 5-HT2A receptors. However, the repeated low doses of psilocybin imparted resilience against the stress of multiple subcutaneous injections, and reduced the frequency of self-grooming, a proxy for human compulsive actions, while also increasing 5-HT7 receptor expression and synaptic density in the paraventricular nucleus of the thalamus. These results establish a well-validated regimen for further experiments probing the effects of repeated low doses of psilocybin. Results further substantiate anecdotal reports of the benefits of psilocybin microdosing as a therapeutic intervention, while pointing to a possible physiological mechanism.


Assuntos
Alucinógenos , Resiliência Psicológica , Humanos , Animais , Ratos , Psilocibina/farmacologia , Psilocibina/uso terapêutico , Alucinógenos/farmacologia , Alucinógenos/uso terapêutico , Núcleos da Linha Média do Tálamo , Serotonina , Comportamento Compulsivo
6.
Front Mol Biosci ; 10: 1265429, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745686

RESUMO

In contrast to the other pentameric ligand-gated ion channels in the Cys-loop receptor superfamily, the ZACN gene encoding for the Zinc-Activated Channel (ZAC) is exclusively found in the mammalian genome. Human ZAC assembles into homomeric cation-selective channels gated by Zn2+, Cu2+ and H+, but the function of the receptor in human physiology is presently poorly understood. In this study, the degree of evolutionary conservation of a functional ZAC in mammals was probed by investigating the abilities of a selection of ZACs from 10 other mammalian species than human to be expressed at the protein level and assemble into cell surface-expressed functional receptors in mammalian cells and in Xenopus oocytes. In an enzyme-linked immunosorbent assay, transient transfections of tsA201 cells with cDNAs of hemagglutinin (HA)-epitope-tagged versions of these 10 ZACs resulted in robust total expression and cell surface expression levels of all proteins. Moreover, injection of cRNAs for 6 of these ZACs in oocytes resulted in the formation of functional receptors in two-electrode voltage-clamp recordings. The ZACs exhibited robust current amplitudes in response to Zn2+ (10 mM) and H+ (pH 4.0), and the concentration-response relationships displayed by Zn2+ at these channels were largely comparable to that at human ZAC. In conclusion, the findings suggest that the functionality of ZAC at the molecular level may be conserved throughout mammalian species, and that the channel thus may govern physiological functions in mammals, including humans.

7.
J Med Chem ; 66(17): 12586-12601, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37650525

RESUMO

Here, we present the discovery of a novel class of benzimidazole-based allosteric modulators of nicotinic acetylcholine receptors (nAChRs). The modulators were developed based on a compound (1) exhibiting positive modulatory activity at α4ß2 nAChR in a compound library screening by functional characterization of 100 analogues of 1 at nAChRs. Two distinct series of positive and negative allosteric modulators (PAMs and NAMs, respectively) comprising benzimidazole as a shared structural moiety emerged from this SAR study. The PAMs mediated weak modulation of α4ß2 and α6ß2ß3, whereas the NAMs exhibited essentially equipotent inhibition of α4ß2, α6ß2ß3, α6ß4ß3, and α3ß4 nAChRs, with analogue 9j [2-(2,4-dichlorophenoxy)-1,3-dimethyl-1-H-benzo[d]imidazole-3-ium] displaying high-nanomolar and low-micromolar IC50 values at the ß2- and ß4-containing receptor subtypes, respectively. We propose that the PAMs and NAMs act through overlapping sites in the nAChR, and these findings thus underline the heterogenous modes of modulation that can arise from a shared allosteric site in the receptor.


Assuntos
Benzimidazóis , Receptores Nicotínicos , Sítio Alostérico , Benzimidazóis/farmacologia , Membrana Celular
8.
J Med Chem ; 66(16): 11536-11554, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37566000

RESUMO

The recombination of natural product (NP) fragments in unprecedented ways has emerged as an important strategy for bioactive compound discovery. In this context, we propose that privileged primary fragments predicted to be enriched in activity against a specific target class can be coupled to diverse secondary fragments to engineer selectivity among closely related targets. Here, we report the synthesis of an alkaloid-inspired compound library enriched in spirocyclic ring fusions, comprising 58 compounds from 12 tropane- or quinuclidine-containing scaffolds, all of which can be considered pseudo-NPs. The library displays excellent predicted drug-like properties including high Fsp3 content and Lipinski's rule-of-five compliance. Targeted screening against selected members of the serotonin and dopamine G protein-coupled receptor family led to the identification of several hits that displayed significant agonist or antagonist activity against 5-HT2A and/or 5-HT2C, and subsequent optimization of one of these delivered a lead dual 5-HT2B/C antagonist with a highly promising selectivity profile.


Assuntos
Alcaloides , Quinuclidinas , Serotonina , Alcaloides/farmacologia , Receptor 5-HT2A de Serotonina , Receptor 5-HT2C de Serotonina , Receptores de Serotonina , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Tropanos , Quinuclidinas/química , Quinuclidinas/farmacologia
9.
ACS Chem Neurosci ; 14(15): 2727-2742, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37474114

RESUMO

Serotonergic psychedelics are described to have activation of the serotonin 2A receptor (5-HT2A) as their main pharmacological action. Despite their relevance, the molecular mechanisms underlying the psychedelic effects induced by certain 5-HT2A agonists remain elusive. One of the proposed hypotheses is the occurrence of biased agonism, defined as the preferential activation of certain signaling pathways over others. This study comparatively monitored the efficiency of a diverse panel of 4-position-substituted (and N-benzyl-derived) phenylalkylamines to induce recruitment of ß-arrestin2 (ßarr2) or miniGαq to the 5-HT2A, allowing us to assess structure-activity relationships and biased agonism. All test compounds exhibited agonist properties with a relatively large range of both EC50 and Emax values. Interestingly, the lipophilicity of the 2C-X phenethylamines was correlated with their efficacy in both assays but yielded a stronger correlation in the miniGαq- than in the ßarr2-assay. Molecular docking suggested that accommodation of the 4-substituent of the 2C-X analogues in a hydrophobic pocket between transmembrane helices 4 and 5 of 5-HT2A may contribute to this differential effect. Aside from previously used standard conditions (lysergic acid diethylamide (LSD) as a reference agonist and a 2 h activation profile to assess a compound's activity), serotonin was included as a second reference agonist, and the compounds' activities were also assessed using the first 30 min of the activation profile. Under all assessed circumstances, the qualitative structure-activity relationships remained unchanged. Furthermore, the use of two reference agonists allowed for the estimation of both "benchmark bias" (relative to LSD) and "physiology bias" (relative to serotonin).


Assuntos
Alucinógenos , Serotonina , Receptor 5-HT2A de Serotonina , Simulação de Acoplamento Molecular , Alucinógenos/farmacologia , Alucinógenos/química , Fenetilaminas/farmacologia , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia
10.
ACS Med Chem Lett ; 14(3): 319-325, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36923922

RESUMO

The N-benzylphenethylamines (NBOMes) are a class of ligands from which compounds with impressive selectivity for the serotonin 2A receptor (5-HT2AR) over the closely related serotonin 2C receptor (5-HT2CR) have emerged. These include 4-(2-((2-hydroxybenzyl)amino)ethyl)-2,5-dimethoxybenzonitrile (25CN-NBOH, 1) and 2-(2,5-dimethoxy-4-bromobenzyl)-6-(2-methoxyphenyl)piperidine (DMPMBB, 2). The present work entails the synthesis and characterization of ligands wherein the structures of these two molecules have been fused. The desired compounds were accessed by a six-step synthetic procedure followed by the chiral resolution of the resulting racemic mixtures, giving one active ((S,S)-3) and three essentially inactive stereoisomers. In silico experiments support that one of the four possible stereoisomers would be active. Further in silico investigations showed that 1, 2, and (S,S)-3 share a common binding mode, further supporting the shared stereochemistry between the active enantiomer ((S,S)-3) and 2.

11.
J Med Chem ; 65(18): 12031-12043, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36099411

RESUMO

The serotonin 2A receptor (5-HT2AR) is the mediator of the psychedelic effects of serotonergic psychedelics, which have shown promising results in clinical studies for several neuropsychiatric indications. The 5-HT2AR is able to signal through the Gαq and ß-arrestin effector proteins, but it is currently not known how the different signaling pathways contribute to the therapeutic effects mediated by serotonergic psychedelics. In the present work, we have evaluated the subtype-selective 5-HT2AR agonist 25CN-NBOH and a series of close analogues for biased signaling at this receptor. These ligands were designed to evaluate the role of interactions with Ser1593×36. The lack of interaction between this hydroxyl moiety and Ser1593×36 resulted in detrimental effects on potency and efficacy in both ßarr2 and miniGαq recruitment assays. Remarkably, Gαq-mediated signaling was considerably more affected. This led to the development of the first efficacious ßarr2-biased 5-HT2AR agonists 4a-b and 6e-f, ßarr2 preferring, relative to lysergic acid diethylamide (LSD).


Assuntos
Alucinógenos , Dietilamida do Ácido Lisérgico , Alucinógenos/farmacologia , Dietilamida do Ácido Lisérgico/farmacologia , Receptor 5-HT2A de Serotonina , Serotonina , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , beta-Arrestinas
12.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35955932

RESUMO

Kainate receptors belong to the family of glutamate receptors ion channels, which are responsible for the majority of rapid excitatory synaptic transmission in the central nervous system. The therapeutic potential of kainate receptors is still poorly understood, which is also due to the lack of potent and subunit-selective pharmacological tools. In search of selective ligands for the GluK3 kainate receptor subtype, a series of quinoxaline-2,3-dione analogues was synthesized and pharmacologically characterized at selected recombinant ionotropic glutamate receptors. Among them, compound 28 was found to be a competitive GluK3 antagonist with submicromolar affinity and unprecedented high binding selectivity, showing a 400-fold preference for GluK3 over other homomeric receptors GluK1, GluK2, GluK5 and GluA2. Furthermore, in functional assays performed for selected metabotropic glutamate receptor subtypes, 28 did not show agonist or antagonist activity. The molecular determinants underlying the observed affinity profile of 28 were analyzed using molecular docking and molecular dynamics simulations performed for individual GluK1 and GluK3 ligand-binding domains.


Assuntos
Receptores de Ácido Caínico , Ligantes , Simulação de Acoplamento Molecular , Domínios Proteicos , Receptores de Ácido Caínico/metabolismo
13.
Nat Prod Rep ; 39(10): 1910-1937, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-35380133

RESUMO

Covering: up to November 2021Since its isolation in 1818, strychnine has attracted the attention of a plethora of chemists and pharmacologists who have established its structure, developed total syntheses, and examined its complex pharmacology. While numerous reviews on structure elucidation and total synthesis of strychnine are available, reports on structure-activity relationships (SARs) of this fascinating alkaloid are rare. In this review, we present and discuss structures, synthetic approaches, metabolic transformations, and the diverse pharmacological actions of strychnine and its mono- and dimeric analogues. Particular attention is given to its SARs at glycine receptors (GlyRs) in light of recently published high-resolution structures of strychnine-GlyR complexes. Other pharmacological actions of strychnine and its derivatives, such as their antagonistic properties at nicotinic acetylcholine receptors (nAChRs), allosteric modulation of muscarinic acetylcholine receptors as well as anti-cancer and anti-plasmodial effects are also critically reviewed, and possible future developments in the field are discussed.


Assuntos
Receptores Nicotínicos , Estricnina , Estricnina/farmacologia , Estricnina/metabolismo , Receptores de Glicina/metabolismo , Relação Estrutura-Atividade , Receptores Nicotínicos/metabolismo , Receptores Muscarínicos/metabolismo
14.
Br J Pharmacol ; 178 Suppl 1: S157-S245, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34529831

RESUMO

The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15539. Ion channels are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Farmacologia , Humanos , Canais Iônicos , Bases de Conhecimento , Ligantes , Receptores Acoplados a Proteínas G
15.
Biochem Pharmacol ; 193: 114781, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34560053

RESUMO

The molecular basis for the signal transduction through the classical Cys-loop receptors (CLRs) has been delineated in great detail. The Zinc-Activated Channel (ZAC) constitutes a so far poorly elucidated fifth branch of the CLR superfamily, and in this study we explore the molecular mechanisms underlying ZAC signaling in Xenopus oocytes by two-electrode voltage clamp electrophysiology. In studies of chimeric receptors fusing either the extracellular domain (ECD) or the transmembrane/intracellular domain (TMD-ICD) of ZAC with the complementary domains of 5-HT3A serotonin or α1 glycine receptors, serotonin and Zn2+/H+ evoked robust concentration-dependent currents in 5-HT3A/ZAC- and ZAC/α1-Gly-expressing oocytes, respectively, suggesting that Zn2+ and protons activate ZAC predominantly through its ECD. The molecular basis for Zn2+-mediated ZAC signaling was probed further by introduction of mutations of His, Cys, Glu and Asp residues in this domain, but as none of the mutants tested displayed substantially impaired Zn2+ functionality compared to wild-type ZAC, the location of the putative Zn2+ binding site(s) in the ECD was not identified. Finally, the functional importance of Leu246 (Leu9') in the transmembrane M2 α-helix of ZAC was investigated by Ala, Val, Ile and Thr substitutions. In concordance with findings for this highly conserved residue in classical CLRs, the ZACL9'X mutants exhibited left-shifted agonist concentration-response relationships, markedly higher degrees of spontaneous activity and slower desensitization kinetics compared to wild-type ZAC. In conclusion, while ZAC is an atypical CLR in terms of its (identified) agonists and channel characteristics, its signal transduction seems to undergo similar conformational transitions as those in the classical CLR.


Assuntos
Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais/fisiologia , Animais , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mutação , Proteínas do Tecido Nervoso/genética , Oócitos , Subunidades Proteicas , Proteínas Recombinantes de Fusão , Xenopus , Zinco/farmacologia
16.
Biochem Pharmacol ; 193: 114782, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34560054

RESUMO

The Zinc-Activated Channel (ZAC) is an atypical member of the Cys-loop receptor (CLR) superfamily of pentameric ligand-gated ion channels, with its very different endogenous agonists and signalling properties. In this study, a compound library screening at ZAC resulted in the identification of 2-(5-bromo-2-chlorobenzamido)-4-methylthiazole-5-methyl ester (1) as a novel ZAC antagonist. The structural determinants for ZAC activity in 1 were investigated by functional characterization of 61 analogs at ZAC expressed in Xenopus oocytes by two-electrode voltage clamp electrophysiology, and couple of analogs exerting more potent ZAC inhibition than 1 were identified (IC50 values: 1-3 µM). 1 and N-(4-(tert-butyl)thiazol-2-yl)-3-fluorobenzamide (5a, TTFB) were next applied in studies of the functional properties and the mode of action of this novel class of ZAC antagonists. TTFB was a roughly equipotent antagonist of Zn+- and H+-evoked ZAC signaling and of spontaneous ZAC activity, and the slow on-set of its channel block suggested that its ZAC inhibition is state-dependent. TTFB was found to be a selective ZAC antagonist, exhibiting no significant agonist, antagonist or modulatory activity at 5-HT3A, α3ß4 nicotinic acetylcholine, α1ß2γ2S GABAA or α1 glycine receptors at 30 µM. 1 displayed largely non-competitive antagonism of Zn2+-induced ZAC signalling, and TTFB was demonstrated to target the transmembrane and/or intracellular domains of the receptor, which collectively suggests that the N-(thiazol-2-yl)-benzamide analog acts a negative allosteric modulator of ZAC. We propose that this first class of selective ZAC antagonists could constitute useful pharmacological tools in future explorations of the presently poorly elucidated physiological functions governed by this CLR.


Assuntos
Benzamidas/farmacologia , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/antagonistas & inibidores , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Animais , Benzamidas/química , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/genética , Descoberta de Drogas , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Proteínas do Tecido Nervoso/genética , Oócitos , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Xenopus
17.
ChemMedChem ; 16(21): 3263-3270, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34288515

RESUMO

4-(2-((2-hydroxybenzyl)amino)ethyl)-2,5-dimethoxybenzonitrile (25CN-NBOH) was first reported as a potent and selective serotonin 2A receptor (5-HT2A R) agonist in 2014, and it has since found extensive use as a pharmacological tool in a variety of in vitro, ex vivo and in vivo studies. 25CN-NBOH is readily available from a synthetic perspective using standard chemical transformations, and displays favorable physiochemical properties in terms of stability and solubility. Due to its superior selectivity for 5-HT2A R, 25CN-NBOH has been used to investigate the effects of selective 5-HT2A R activation in vivo, and has thus become an important pharmacological tool for the exploration of 5-HT2A R signaling in a range of animal models. In the present review, we outline the discovery of 25CN-NBOH, its pharmacological profile and major findings from studies where it has been used.


Assuntos
Receptor 5-HT2A de Serotonina/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Humanos , Estrutura Molecular , Agonistas do Receptor 5-HT2 de Serotonina/química
18.
J Org Chem ; 86(12): 8248-8262, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34061521

RESUMO

Erythrina alkaloids and their central nervous system effects have been studied for over a century, mainly due to their potent antagonistic actions at ß2-containing nicotinic acetylcholine receptors (nAChRs). In the present work, we report a synthetic approach giving access to a diverse set of Erythrina natural product analogues and present the enantioselective total synthesis of (+)-Cocculine and (+)-Cocculidine, both found to be potent antagonists of the ß2-containing nAChRs.


Assuntos
Alcaloides , Erythrina , Indolizinas , Receptores Nicotínicos , Alcaloides/farmacologia , Descoberta de Drogas
19.
Pharmacol Res ; 169: 105653, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33962015

RESUMO

The signalling characteristics of the Zinc-Activated Channel (ZAC), a member of the Cys-loop receptor (CLR) superfamily, are presently poorly elucidated. The ZACN polymorphism c.454G>A encoding for the Thr128Ala variation in ZAC is found in extremely high allele frequencies across ethnicities. In this, the first study of ZAC in Xenopus oocytes by TEVC electrophysiology, ZACThr128 and ZACAla128 exhibited largely comparable pharmacological and signalling characteristics, but interestingly the Zn2+- and H+-evoked current amplitudes in ZACAla128-oocytes were dramatically smaller than those in ZACThr128-oocytes. While the variation thus appeared to impact cell surface expression and/or channel properties of ZAC, the similar expression properties exhibited by ZACThr128 and ZACAla128 in transfected mammalian cells indicated that their distinct functionalities could arise from the latter. In co-expression experiments, wild-type and variant ZAC subunits assembled efficiently into "heteromeric" complexes in HEK293 cells, while the concomitant presence of ZACAla128 in ZACThr128:ZACAla128-oocytes did not exert a dominant negative effect on agonist-evoked current amplitudes compared to those in ZACThr128-oocytes. Finally, the structural determinants of the functional importance of the 1-hydroxyethyl side-chain of Thr128 appeared to be subtle, as agonist-evoked current amplitudes in ZACSer128-, ZACVal128- and ZACIle128-oocytes also were substantially lower than those in ZACThr128-oocytes. In conclusion, the functional properties exhibited by ZAC in this work substantiate the notion of it being an atypical CLR. While the impact of the Thr128Ala variation on ZAC functionality in oocytes is striking, it remains to be investigated whether and to which extent this translates into an in vivo setting and thus could constitute a source of inter-individual variation in ZAC physiology.


Assuntos
Canais Iônicos/metabolismo , Zinco/metabolismo , Animais , Ensaio de Imunoadsorção Enzimática , Imunoprecipitação , Canais Iônicos/genética , Canais Iônicos/fisiologia , Oócitos/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Xenopus laevis
20.
J Nat Prod ; 84(2): 382-394, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33596384

RESUMO

Strychnine is the prototypic antagonist of glycine receptors, a family of pentameric ligand-gated ion channels. Recent high-resolution structures of homomeric glycine receptors have confirmed the presence of five orthosteric binding sites located in the extracellular subunit interfaces of the receptor complex that are targeted by strychnine. Here, we report the synthesis and extensive pharmacological evaluation of bivalent ligands composed of two strychnine pharmacophores connected by appropriate spacers optimized toward simultaneous binding to two adjacent orthosteric sites of homomeric α1 glycine receptors. In all bivalent ligands, the two strychnine units were linked through C-2 by amide spacers of various lengths ranging from 6 to 69 atoms. Characterization of the compounds in two functional assays and in a radioligand binding assay indicated that compound 11a, with a spacer consisting of 57 atoms, may be capable of bridging the homomeric α1 GlyRs by simultaneous occupation of two adjacent strychnine-binding sites. The findings are supported by docking experiments to the crystal structure of the homomeric glycine receptor. Based on its unique binding mode, its relatively high binding affinity and antagonist potency, and its slow binding kinetics, the bivalent strychnine analogue 11a could be a valuable tool to study the functional properties of glycine receptors.


Assuntos
Receptores de Glicina/antagonistas & inibidores , Estricnina/análogos & derivados , Sítios de Ligação , Humanos , Ligantes , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Ensaio Radioligante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...